Respuesta :

Answer:

[tex]sen(2\theta) =\frac{24}{25}[/tex]

Step-by-step explanation:

We know that [tex]cos(\theta) =\frac{3}{5}[/tex] and θ is in quadrant IV

To find [tex]sin(\theta)[/tex] we use the following identity

[tex]sin^2(\theta)=1-cos^2(\theta)[/tex]

[tex]cos^2(\theta) =\frac{3^2}{5^2}[/tex]

[tex]cos^2(\theta) =\frac{9}{25}[/tex]

Then

[tex]sin^2(\theta)=1-\frac{9}{25}[/tex]

[tex]sin^2(\theta)=\frac{16}{25}[/tex]

[tex]sin(\theta)=\±\sqrt{\frac{16}{25}}[/tex]

In the IV quadrant the [tex]sin(\theta)> 0[/tex] then we take the positive solution

[tex]sin(\theta)=\frac{4}{5}[/tex]

Finally to find  [tex]sin(2\theta)[/tex] we use the following identity

[tex]sen(2\theta) = 2 sen(\theta) cos(\theta)[/tex]

Finally

[tex]sen(2\theta) = 2*\frac{4}{5}*\frac{3}{5}[/tex]

[tex]sen(2\theta) =\frac{24}{25}[/tex]

ACCESS MORE