Answer:
[tex]sen(2\theta) =\frac{24}{25}[/tex]
Step-by-step explanation:
We know that [tex]cos(\theta) =\frac{3}{5}[/tex] and θ is in quadrant IV
To find [tex]sin(\theta)[/tex] we use the following identity
[tex]sin^2(\theta)=1-cos^2(\theta)[/tex]
[tex]cos^2(\theta) =\frac{3^2}{5^2}[/tex]
[tex]cos^2(\theta) =\frac{9}{25}[/tex]
Then
[tex]sin^2(\theta)=1-\frac{9}{25}[/tex]
[tex]sin^2(\theta)=\frac{16}{25}[/tex]
[tex]sin(\theta)=\±\sqrt{\frac{16}{25}}[/tex]
In the IV quadrant the [tex]sin(\theta)> 0[/tex] then we take the positive solution
[tex]sin(\theta)=\frac{4}{5}[/tex]
Finally to find [tex]sin(2\theta)[/tex] we use the following identity
[tex]sen(2\theta) = 2 sen(\theta) cos(\theta)[/tex]
Finally
[tex]sen(2\theta) = 2*\frac{4}{5}*\frac{3}{5}[/tex]
[tex]sen(2\theta) =\frac{24}{25}[/tex]