Hence, the answer is:
13860
Sally has 6 red flags, 4 green flags, and 2 white flags.
i.e. there are a total of 12 flags.
Now, we are asked to find the different number of arrangements that may be made with the help of these 12-flags.
We need to use the method of permutation in order to find the different number of arrangements.
The rule is used as follows:
If we need to arrange n items such that there are [tex]n_1[/tex] number of items of one type,[tex]n_2[/tex] items same of other type .
Then the number of ways of arranging them is:
[tex]=\dfrac{n!}{n_1!\cdot n_2!}[/tex]
Hence, here the number of ways of forming a flag signal is:
[tex]=\dfrac{12!}{6!\times 4!\times 2!}[/tex]
( since 6 flags are of same color i.e. red , 4 flags are of green color and 2 are of white colors )
[tex]=\dfrac{12\times 11\times 10\times 9\times 8\times 7\times 6!}{6!\times 4!\times 2!}\\\\\\=\dfrac{12\times 11\times 10\times 9\times 8\times 7}{4\times 3\times 2\times 2}\\\\=13860[/tex]