Answer:
Given: [tex]\begin{bmatrix}2&5&-2&1&2\\1&1&-2&1&4\end{bmatrix}[/tex]
[tex]2x_{1}+5 x_{2} - 2_{3} + x_{4} + 2x_{5}\\[tex]
[tex]x_{1}+ x_{2} - 2_{3} + x_{4} + 4x_{5}\\[/tex]
The system of linear equations in matrix form may be written as:
AX=B,
where,
A is coefficient matrix of order [tex]2\times 4[/tex] and is given by:
A = [tex]\begin{bmatrix}2&5&-2&1&2\\1&1&-2&1&4\end{bmatrix}[/tex]
X is variable matrix of order [tex]5\times 1[/tex] and is given by:
X= [tex]\begin{bmatrix}x_{_{1}}\\x_{_{2}}\\x_{3}\\x_{4}\\x_{5}\end{bmatrix}[/tex]
and B is the contant matrix of order [tex]2\times 1[/tex] and is given by:
B = [tex]\begin{bmatrix}1\\5\end{bmatrix}[/tex]
Now, AX=B
[tex]\begin{bmatrix}2&5&-2&1&2\\1&1&-2&1&4\end{bmatrix}[/tex]. [tex]\begin{bmatrix}x_{_{1}}\\x_{_{2}}\\x_{3}\\x_{4}\\x_{5}\end{bmatrix}[/tex] = [tex]\begin{bmatrix}1\\5\end{bmatrix}[/tex]