QUESTIONS The average price of wheat per metric ton in 2012 was $30575. Demand in millions of metric tons) in 2012 was 672. The average price of wheat per metric ton in 2013 was $291.56, while the demand was 700. Calculate the elasticity and classify as elastic or inelastic -0.04 elastic -0.9, elastic -0.9; inelastic -3.84, elastic -0.04 inelastic

Respuesta :

Answer: -0.9 ; inelastic

Explanation:  

Given:

The average price of wheat per metric ton in 2012 = $305.75

Demand (in millions of metric tons) in 2012 = 672

The average price of wheat per metric ton in 2013 =  $291.56

Demand (in millions of metric tons) in 2013 = 700

We will compute the elasticity using the following formula:

ε = [tex]\frac{\frac{(Q_{2} - Q_{1})}{\frac{(Q_{2} +Q_{1})}{2}}}{\frac{(P_{2} - P_{1})}{\frac{(P_{2} +P_{1})}{2}}}[/tex]

ε = [tex]\frac{\Delta Q}{\Delta P}[/tex]

Now , we'll first compute  [tex]\Delta Q[/tex]

i.e.  [tex]\frac{\Delta Q}{\Delta P}[/tex] = [tex]\frac{(700 - 672)}{\frac{(700 +672)}{2}}[/tex]

[tex]\Delta Q[/tex] = 0.04081

Similarly for  [tex]\Delta P[/tex]

i.e. [tex]\Delta P[/tex] = [tex]\frac{(291.56 - 305.75)}{\frac{(261.56 +305.75)}{2}}[/tex]

[tex]\Delta P[/tex] = -0.0475

ε = [tex]\frac{0.04081}{-0.0475}[/tex]

ε = -0.859 [tex]\simeq[/tex] -0.9

[tex]\because[/tex] we know that ;

If, ε > 1 ⇒ Elastic

ε < 1 ⇒ Inelastic

ε = 1 ⇒ unit elastic

[tex]\because[/tex] Here , ε = -0.859 [tex]\simeq[/tex] -0.9

Therefore ε is inelastic.

ACCESS MORE