Answer: -0.9 ; inelastic
Explanation:
Given:
The average price of wheat per metric ton in 2012 = $305.75
Demand (in millions of metric tons) in 2012 = 672
The average price of wheat per metric ton in 2013 = $291.56
Demand (in millions of metric tons) in 2013 = 700
We will compute the elasticity using the following formula:
ε = [tex]\frac{\frac{(Q_{2} - Q_{1})}{\frac{(Q_{2} +Q_{1})}{2}}}{\frac{(P_{2} - P_{1})}{\frac{(P_{2} +P_{1})}{2}}}[/tex]
ε = [tex]\frac{\Delta Q}{\Delta P}[/tex]
Now , we'll first compute [tex]\Delta Q[/tex]
i.e. [tex]\frac{\Delta Q}{\Delta P}[/tex] = [tex]\frac{(700 - 672)}{\frac{(700 +672)}{2}}[/tex]
[tex]\Delta Q[/tex] = 0.04081
Similarly for [tex]\Delta P[/tex]
i.e. [tex]\Delta P[/tex] = [tex]\frac{(291.56 - 305.75)}{\frac{(261.56 +305.75)}{2}}[/tex]
[tex]\Delta P[/tex] = -0.0475
ε = [tex]\frac{0.04081}{-0.0475}[/tex]
ε = -0.859 [tex]\simeq[/tex] -0.9
[tex]\because[/tex] we know that ;
If, ε > 1 ⇒ Elastic
ε < 1 ⇒ Inelastic
ε = 1 ⇒ unit elastic
[tex]\because[/tex] Here , ε = -0.859 [tex]\simeq[/tex] -0.9
Therefore ε is inelastic.