Answer: [tex](0.52,\ 0.68)[/tex]
Step-by-step explanation:
The formula for a [tex]\alpha[/tex]- level confidence interval for the population proportion:-
[tex]p\pm z_{\alpha/2}\times\sqrt{\dfrac{p(1-p)}{n}}[/tex]
Given : n = 225 ; p = 0.60 ; [tex]\alpha= 1-0.99=0.01[/tex]
By using the given information , the confidence interval for the population proportion:-
[tex]0.6\pm z_{0.005}\times\sqrt{\dfrac{0.6(1-0.6)}{225}}\\\\=0.6\pm(2.576)(0.0327)\\\\=0.6\pm0.08\\\\=0.6-0.08,\ 0.6+0.08\\\\=(0.52,\ 0.68)[/tex]
Hence, the resulting confidence interval is [tex](0.52,\ 0.68)[/tex] .