Answer with Step-by-step explanation:
We are given that if f is integrable on [a,b].
c is an element which lie in the interval [a,b]
We have to prove that when we change the value of f at c then the value of f does not change on interval [a,b].
We know that limit property of an integral
[tex]\int_{a}^{b}f dt=\int_{a}^{c}fdt+\int_{c}^{b} fdt[/tex]
[tex]\int_{a}^{b} fdt=f(b)-f(a)[/tex]....(Equation I)
Using above property of integral then we get
[tex]\int_{a}^{b}fdt=\int_{a}^{c}fdt+\int_{c}^{b} fdt[/tex]......(Equation II)
Substitute equation I and equation II are equal
Then we get
[tex]\int_{a}^{b}fdt= f(c)-f(a)+{f(b)-f(c)}[/tex]
[tex]\int_{a}^{b}fdt=f(c)-f(a)+f(b)-f(c)=f(b)-f(a)[/tex]
[tex]\int_{a}^{c}fdt+\int_{c}^{b}fdt=f(b)-f(a)[/tex]
Therefore, [tex]\int_{a}^{b}fdt=\int_{a}^{c}fdt+\int_{c}^{b}fdt[/tex].
Hence, the value of function does not change after changing the value of function at c.