Prove that if the set of vectors {u1, u2, u3} is linearly dependent and u4 is any vector, then the set {u1, u2, u3, u4} is linearly dependent.

Respuesta :

Answer with Step-by-step explanation:

We are given that the set of vectors[tex] {u_1,u_2,u_3}[/tex] is lineraly dependent set .

We have to prove that the set [tex]{u_1,u_2,u_3,u_4}[/tex] is linearly dependent .

Linearly dependent vectors : If the vectors [tex] u_1,u_2.u_3,u_4[/tex]

are linearly  dependent therefore the linear combination

[tex]a_1u_1+a_2u_2+a_3u_3+a_4u_4=0[/tex]

Then ,there exit a scalar which is not equal to zero .

Let [tex]a_1\neq0[/tex] then the vector [tex]u_1[/tex] will be zero and remaining  other vectors are not zero.

Proof:

When [tex]u_1,u_2,u_3[/tex] are linearly dependent vectors therefore, linear combination of vectors of given set

[tex]a_1u_1+a_2u_2+a_3u_3=0[/tex]

By definition of linearly dependent vector

There exist a scalar which is not equal to zero.

Suppose [tex]a_1\neq 0[/tex] then  [tex]u_1=0[/tex]

The linear combination of the set [tex]{u_1,u_2,u_3,u_4}[/tex]

[tex]a_1u_1+a_2u_2+a_3u_3+a_4u_4=0[/tex]

When [tex]a_1\neq0\; and\; u_1=0[/tex]

Therefore,the set [tex]{u_1,u_2,u_3,u_4}[/tex] is linearly dependent because it contain a vector which is zero.

Hence, proved .