Answer with Step-by-step explanation:
We are given that the set of vectors[tex] {u_1,u_2,u_3}[/tex] is lineraly dependent set .
We have to prove that the set [tex]{u_1,u_2,u_3,u_4}[/tex] is linearly dependent .
Linearly dependent vectors : If the vectors [tex] u_1,u_2.u_3,u_4[/tex]
are linearly dependent therefore the linear combination
[tex]a_1u_1+a_2u_2+a_3u_3+a_4u_4=0[/tex]
Then ,there exit a scalar which is not equal to zero .
Let [tex]a_1\neq0[/tex] then the vector [tex]u_1[/tex] will be zero and remaining other vectors are not zero.
Proof:
When [tex]u_1,u_2,u_3[/tex] are linearly dependent vectors therefore, linear combination of vectors of given set
[tex]a_1u_1+a_2u_2+a_3u_3=0[/tex]
By definition of linearly dependent vector
There exist a scalar which is not equal to zero.
Suppose [tex]a_1\neq 0[/tex] then [tex]u_1=0[/tex]
The linear combination of the set [tex]{u_1,u_2,u_3,u_4}[/tex]
[tex]a_1u_1+a_2u_2+a_3u_3+a_4u_4=0[/tex]
When [tex]a_1\neq0\; and\; u_1=0[/tex]
Therefore,the set [tex]{u_1,u_2,u_3,u_4}[/tex] is linearly dependent because it contain a vector which is zero.
Hence, proved .