Answer : The temperature of this gas will be, 206.9 K
Explanation :
The expression for the kinetic energy per molecule of monoatomic gas (argon) is:
[tex]K.E_{argon}=n_{argon}\times \frac{3}{2}\times K_BT[/tex] ...........(1)
The expression for the kinetic energy per molecule of diatomic gas (nitrogen gas) is:
[tex]K.E_{nitrogen}=n_{nitrogen}\times \frac{5}{2}\times K_BT[/tex] .............(2)
The total kinetic energy of the molecule will be,
[tex]K.E_{Total}=K.E_{argon}+K.E_{nitrogen}[/tex]
Now put all the expression in this, we get:
[tex]K.E_{Total}=(7500)\times \frac{3}{2}\times K_BT+(2500)\times \frac{5}{2}\times K_BT[/tex]
[tex]T=\frac{K.E}{17500\times K_B}[/tex]
Now put all the given values in this expression, we get:
[tex]T=\frac{5\times 10^{-17}J}{17500\times (1.381\times 10^{-23}J/K)}[/tex]
[tex]T=206.9K[/tex]
Therefore, the temperature of this gas will be, 206.9 K