Answer:
[tex] Fermi\ energy=7.49\times 10^{-12}J[/tex]
Explanation:
We know that Fermi energy
[tex]F_e=\dfrac{h^2}{8m}\left(\dfrac{3N}{\pi V}\right)^{\dfrac{2}{3}}[/tex]
[tex]Mass\ of\ neutron(m)=1.67 x 10^{-27}kg[/tex]
[tex]Volume(V)=\dfrac{4}{3}\pi r^3[/tex]
r=Radius of neutron star=18 km
[tex]Volume(V)=\dfrac{4}{3}\pi \times (18\times 10^3)^3[/tex]
tex]V=2.44\times 10^{13}m^3[/tex]
Mass of neutron star(M)=2.1 x mass of sun
[tex]Mass\ of\ sun(m_s)=1.98 x 10^{30}kg[/tex]
⇒[tex]M=2.1\times 1.98\times 10^{30}kg[/tex]
[tex]M=4.158\times 10^{30}kg[/tex]
[tex]N=\dfrac{M}{m}[/tex]
[tex]N=\dfrac{4.158\times 10^{30}}{1.67 x 10^{-27}}[/tex]
[tex]N=2.8\times 10^{57}[/tex]
Now by putting all values in
[tex]F_e=\dfrac{h^2}{8m}\left(\dfrac{3N}{\pi V}\right)^{\dfrac{2}{3}}[/tex]
[tex]F_e=\dfrac{(6.62\times 10^{-34})^2}{8\times 1.674\times 10^{-27}}\left(\dfrac{2.8\times 10^{57}\times 3}{\pi \times 2.44\times 10^{13}}\right)^{\dfrac{2}{3}}[/tex]
[tex]So\ Fermi\ energy=7.49\times 10^{-12} J[/tex]