Determine the Fermi energy for a neutron star of radius 18 km and mass 2.1 times that of our Sun. Assume that the star is made entirely of neutrons and is of uniform density.

Respuesta :

Answer:

[tex] Fermi\ energy=7.49\times 10^{-12}J[/tex]

Explanation:

 We know that Fermi energy

       [tex]F_e=\dfrac{h^2}{8m}\left(\dfrac{3N}{\pi V}\right)^{\dfrac{2}{3}}[/tex]

[tex]Mass\ of\ neutron(m)=1.67 x 10^{-27}kg[/tex]

[tex]Volume(V)=\dfrac{4}{3}\pi r^3[/tex]

   r=Radius of neutron star=18 km

[tex]Volume(V)=\dfrac{4}{3}\pi \times (18\times 10^3)^3[/tex]

tex]V=2.44\times 10^{13}m^3[/tex]

Mass of neutron star(M)=2.1 x mass of sun

[tex]Mass\ of\ sun(m_s)=1.98 x 10^{30}kg[/tex]

⇒[tex]M=2.1\times 1.98\times 10^{30}kg[/tex]

[tex]M=4.158\times 10^{30}kg[/tex]

[tex]N=\dfrac{M}{m}[/tex]

[tex]N=\dfrac{4.158\times 10^{30}}{1.67 x 10^{-27}}[/tex]

[tex]N=2.8\times 10^{57}[/tex]

Now by putting all values in

 [tex]F_e=\dfrac{h^2}{8m}\left(\dfrac{3N}{\pi V}\right)^{\dfrac{2}{3}}[/tex]

 [tex]F_e=\dfrac{(6.62\times 10^{-34})^2}{8\times 1.674\times 10^{-27}}\left(\dfrac{2.8\times 10^{57}\times 3}{\pi \times 2.44\times 10^{13}}\right)^{\dfrac{2}{3}}[/tex]

[tex]So\ Fermi\ energy=7.49\times 10^{-12} J[/tex]

ACCESS MORE