Respuesta :
The vectors in [tex]S[/tex] form a basis of [tex]P_2[/tex] if they are mutually linearly independent and span [tex]P_2[/tex].
To check for independence, we can compute the Wronskian determinant:
[tex]\begin{vmatrix}x^2+3x+1&2x^2+x-1&4\\2x+3&4x+1&0\\2&4&0\end{vmatrix}=4\begin{vmatrix}2x+3&4x+1\\2&4\end{vmatrix}=40\neq0[/tex]
The determinant is non-zero, so the vectors are indeed independent.
To check if they span [tex]P_2[/tex], you need to show that any vector in [tex]P_2[/tex] can be expressed as a linear combination of the vectors in [tex]S[/tex]. We can write an arbitrary vector in [tex]P_2[/tex] as
[tex]p=ax^2+bx+c[/tex]
Then we need to show that there is always some choice of scalars [tex]k_1,k_2,k_3[/tex] such that
[tex]k_1(x^2+3x+1)+k_2(2x^2+x-1)+k_34=p[/tex]
This is equivalent to solving
[tex](k_1+2k_2)x^2+(3k_1+k_2)x+(k_1-k_2+4k_3)=ax^2+bx+c[/tex]
or the system (in matrix form)
[tex]\begin{bmatrix}1&1&0\\3&1&0\\1&-1&4\end{bmatrix}\begin{bmatrix}k_1\\k_2\\k_3\end{bmatrix}=\begin{bmatrix}a\\b\\c\end{bmatrix}[/tex]
This has a solution if the coefficient matrix on the left is invertible. It is, because
[tex]\begin{vmatrix}1&1&0\\3&1&0\\1&-1&4\end{vmatrix}=4\begin{vmatrix}1&2\\3&1\end{vmatrix}=-20\neq0[/tex]
(that is, the coefficient matrix is not singular, so an inverse exists)
Compute the inverse any way you like; you should get
[tex]\begin{bmatrix}1&1&0\\3&1&0\\1&-1&4\end{bmatrix}^{-1}=-\dfrac1{20}\begin{bmatrix}4&-8&0\\-12&4&0\\-4&3&-5\end{bmatrix}[/tex]
Then
[tex]\begin{bmatrix}k_1\\k_2\\k_3\end{bmatrix}=\begin{bmatrix}1&1&0\\3&1&0\\1&-1&4\end{bmatrix}^{-1}\begin{bmatrix}a\\b\\c\end{bmatrix}[/tex]
[tex]\implies k_1=\dfrac{2b-a}5,k_2=\dfrac{3a-b}5,k_3=\dfrac{4a-3b+5c}{20}[/tex]
A solution exists for any choice of [tex]a,b,c[/tex], so the vectors in [tex]S[/tex] indeed span [tex]P_2[/tex].
The vectors in [tex]S[/tex] are independent and span [tex]P_2[/tex], so [tex]S[/tex] forms a basis of [tex]P_2[/tex].