Answer: 2.14 %
Step-by-step explanation:
Given : pH measurements of a chemical solutions have
Mean : [tex]\mu=6.8[/tex]
Standard deviation : [tex]\sigma=0.02[/tex]
Let X be the pH reading of a randomly selected customer chemical solution.
We assume pH measurements of this solution have a nearly symmetric/bell-curve distribution (i.e. normal distribution).
The z-score for the normal distribution is given by :-
[tex]z=\dfrac{x-\mu}{\sigma}[/tex]
For x = 6.74
[tex]z=\dfrac{6.74-6.8}{0.02}=-3[/tex]
For x = 6.76
[tex]z=\dfrac{6.76-6.8}{0.02}=-2[/tex]
The p-value =[tex]P(6.74<x<6,76)=P(-3<z<-2)[/tex]
[tex]P(z<-2)-P(z<-3)=0.0227501- 0.0013499=0.0214002\approx0.0214[/tex]
In percent, [tex]0.0214\times=2.14\%[/tex]
Hence, the percent of pH measurements reading below 6.74 OR above 6.76 = 2.14%