g 4. Determine which of the following functions are even, which are odd, and which are neither. (a) f(x) = x 3 + 3x (b) f(x) = 4 sin 2x (c) f(x) = x 2 + |x| (d) f(x) = e x (e) f(x) = 1 x (f) f(x) = 1 2 (e x + e −x ) (g) f(x) = x cos x (h) f(x) = 1 2 (e x − e −x ).

Respuesta :

Answer:Given below

Step-by-step explanation:

A function is said to be odd if

[tex]F\left ( x\right )=F\left ( -x\right )[/tex]

(a)[tex]F\left ( x\right )=x^3+3x[/tex]

[tex]F\left ( -x\right )=-x^3-3x=-\left ( x^3+3x\right )[/tex]

odd function

(b)[tex]F\left ( x\right )=4sin2x[/tex]

[tex]F\left ( -x\right )=-4sin2x[/tex]

odd function

(c)[tex]F\left ( x\right )=x^2+|x|[/tex]

[tex]F\left ( -x\right )=\left ( -x^2\right )+|-x|=x^2+|x|[/tex]

even function

(d)[tex]F\left ( x\right )=e^x[/tex]

[tex]F\left ( -x\right )=e^{-x}[/tex]

neither odd nor even

(e)[tex]F\left ( x\right )=\frac{1}{x}[/tex]

[tex]F\left ( -x\right )=-\frac{1}{x}[/tex]

odd

(f)[tex]F\left ( x\right )=\frac{1}{2}\left ( e^x+e^{-x}\right )[/tex]

[tex]F\left ( -x\right )=\frac{1}{2}\left ( e^{-x}+e^{x}\right )[/tex]

even function

(g)[tex]F\left ( x\right )=xcosx(h)[/tex]

[tex]F\left ( -x\right )=-xcosx(h)[/tex]

odd function

(h)[tex]F\left ( x\right )=\frac{1}{2}\left ( e^x-e^{-x}\right )[/tex]

[tex]F\left ( -x\right )=\frac{1}{2}\left ( e^{-x}+e^{x}\right )[/tex]

odd function

ACCESS MORE