Answer: 0.0192
Step-by-step explanation:
Given : The mean per capita consumption of milk per year : [tex]\mu=140\text{ liters}[/tex]
Standard deviation : [tex]\sigma=22\text{ liters}[/tex]
Sample size : [tex]n=233[/tex]
Let [tex]\overline{x}[/tex] be the sample mean.
The formula for z-score in a normal distribution :
[tex]z=\dfrac{\overline{x}-\mu}{\dfrac{\sigma}{\sqrt{n}}}[/tex]
For [tex]\overline{x}=137.01[/tex]
[tex]z=\dfrac{137.01-140}{\dfrac{22}{\sqrt{233}}}\approx-2.07[/tex]
The P-value = [tex]P(\overline{x}<137.01)=P(z<-2.07)= 0.0192262\approx 0.0192[/tex]
Hence, the probability that the sample mean would be less than 137.01 liters is 0.0192 .