Answer:
i) [tex]E = \frac{-Q r}{4\pi \epsilon_0 a^3}[/tex]
ii) [tex]E = \frac{-Q}{4\pi \epsilon_0 r^2}[/tex]
iii) E = 0
iv) [tex]E = \frac{Q}{4\pi \epsilon_0 r^2}[/tex]
Explanation:
1) Electric field inside uniformly charged ball
By Gauss law we will have
[tex] \int E . dA = \frac{q_{en}}{\epsilon_0}[/tex]
now we have
[tex]E(4\pi r^2) = \frac{-Q r^3}{\epsilon_0 a^3}[/tex]
[tex]E = \frac{-Q r}{4\pi \epsilon_0 a^3}[/tex]
2) Electric field outside the ball and inside the shell
By Gauss law we will have
[tex] \int E . dA = \frac{q_{en}}{\epsilon_0}[/tex]
now we have
[tex]E(4\pi r^2) = \frac{-Q}{\epsilon_0}[/tex]
[tex]E = \frac{-Q}{4\pi \epsilon_0 r^2}[/tex]
3)Electric field inside the metallic shell
E = 0
As we know that inside the conductor net electric field is always zero
4)Electric field outside the shell
By Gauss law we will have
[tex] \int E . dA = \frac{q_{en}}{\epsilon_0}[/tex]
now we have
[tex]E(4\pi r^2) = \frac{-Q + 2Q}{\epsilon_0}[/tex]
[tex]E = \frac{Q}{4\pi \epsilon_0 r^2}[/tex]