Answer:k=1,k=-2,k=[tex]8\pm 5\sqrt{3}[/tex]
Step-by-step explanation:
Given two vectors
[tex]u=1\hat{i}+k\hat{j}[/tex]
[tex]v=2\hat{i}+1\hat{j}[/tex]
[tex]\left ( i\right )[/tex]Distance between them is given by
[tex]|u-v|=\sqrt{\left ( 2-1\right )^2+\left ( 1-k\right )^2}=1[/tex]
squaring both side
[tex]1^{2}+\left ( 1-k\right )^2=1[/tex]
[tex]k^2-2k+1=0[/tex]
[tex]\left ( k-1\right )^2=0[/tex]
k=1
[tex]\left ( ii\right )[/tex]
angle between u and v is 90 i.e. orthogonal
[tex]u\dot v=0[/tex]
[tex]\left ( 1\hat{i}+k\hat{j}\right )\dot \left ( 2\hat{i}+1\hat{j}\right )[/tex]=0
2+k=0
k=-2
[tex]\left ( iii\right )[/tex]
angle between u & v is [tex]\frac{\pi }{3}[/tex]
[tex]u\dot v=|u||v|cos\left (\frac{\pi }{3}\right )[/tex]
[tex]|u|=\sqrt{1^2+k^2}[/tex]
[tex]|v|=\sqrt{2^2+1^2}[/tex]
[tex]2+k=\left ( \sqrt{1+k^2}\right )\left ( \sqrt{5}\right )cos\left ( \frac{\pi }{3}\right )[/tex]
[tex]\left ( 4+2\right )^2=\left ( 1+k^2\right )5[/tex]
[tex]k^2-16k-11[/tex]=0
k=[tex]8\pm 5\sqrt{3}[/tex]