Answer:
[tex]v=0.9714c[/tex]
Explanation:
The kinetic energy possessed by particles will be
[tex]K.E=\frac{1}{2}Mc^2[/tex]
where,
M is the mass of the particle (7920938.3 MeV/c²)
c is the speed of the light
Also,
energy of the proton particle = [tex]\frac{m_pc^2}{\sqrt{1-\frac{v^2}{c^2}}}[/tex]
where,
v is the velocity
m_p is the mass of the proton (938.3 MeV/c²)
since the energy is equal
thus,
[tex]\frac{m_pc^2}{\sqrt{1-\frac{v^2}{c^2}}}=\frac{1}{2}Mc^2[/tex]
or
[tex]1-\frac{v^2}{c^2}=[\frac{2m_p}{M}]^2[/tex]
substituting the values in the above equation, we get
[tex]1-\frac{v^2}{c^2}=[\frac{2\times 938.3 }{7920}]^2[/tex]
or
[tex]v=0.9714c[/tex]
Hence, the speed necessary for the specified condition to occur is 0.9714 times the speed of the light