What is the solution to log^2(9x) -log^2 3=3
![What is the solution to log29x log2 33 class=](https://us-static.z-dn.net/files/d6e/c63653527c0ffeb95fef4f753996b6fe.png)
Answer: [tex]\bold{B)\quad x = \dfrac{8}{3}}[/tex]
Step-by-step explanation:
[tex]log_2(9x)-log_2(3)=3\\\\\\log_2\bigg(\dfrac{9x}{3}\bigg)=3\qquad\qquad \rightarrow \text{used rule for condensing logs}\\\\\\log_2(3x)=3\qquad\qquad \rightarrow \text{simplified}\\\\\\3x=2^3\qquad\qquad \rightarrow \text{used rule for eliminating log}\\\\\\3x=8\qquad\qquad \rightarrow \text{simplified}\\\\\\\large\boxed{x=\dfrac{8}{3}}[/tex]