Respuesta :
Answer:
The two intersections are (3/2 , 5/4) and (4,0).
I put two ways to do it. You can pick your favorite of these are try another route if you like.
Step-by-step explanation:
The system is:
[tex]y=x^2-6x+8[/tex]
[tex]2y+x=4[/tex].
I don't know how good at factoring you are but the top equation consists of polynomial expression that has a factor of (x-4). I see that if I solve 2y+x=4 for 2y I get 2y=-x+4 which is the opposite of (x-4) so -2y=x-4.
So anyways, factoring x^2-6x+8=(x-4)(x-2) because -4+(-2)=-6 while -4(-2)=8.
This is the system I'm looking at right now:
[tex]y=(x-4)(x-2)[/tex]
[tex]-2y=x-4[/tex]
I'm going to put -2y in for (x-4) in the first equation:
[tex]y=-2y(x-2)[/tex]
So one solution will occur when y is 0.
Now assume y is not 0 and divide both sides by y:
[tex]1=-2(x-2)[/tex]
Distribute:
[tex]1=-2x+4[/tex]
Subtract 4 on both sides:
[tex]-3=-2x[/tex]
Divide both sides by -2:
[tex]\frac{-3}{-2}=x[/tex]
[tex]\frac{3}{2}=x[/tex]
[tex]x=\frac{3}{2}[/tex]
Now let's go back to one of the original equations:
2y=-x+4
Divide both sides by 2:
[tex]y=\frac{-x+4}{2}[/tex]
Plug in 3/2 for x:
[tex]y=\frac{\frac{-3}{2}+4}{2}[/tex]
Multiply top and bottom by 2:
[tex]y=\frac{-3+8}{4}[/tex]
[tex]y=\frac{5}{4}[/tex]
So one solution is at (3/2 , 5/4).
The other solution happened at y=0:
2y=-x+4
Plug in 0 for y:
2(0)=-x+4
0=-x+4
Add x on both sides:
x=4
So the other point of intersection is (4,0).
-------------------------------------------------------
The two intersections are (3/2 , 5/4) and (4,0).
Now if you don't like that way:
[tex]y=x^2-6x+8[/tex]
[tex]2y+x=4[/tex]
Replace y in bottom equation with (x^2-6x+8):
[tex]2(x^2-6x+8)+x=4[/tex]
Distribute:
[tex]2x^2-12x+16+x=4[/tex]
Subtract 4 on both sides:
[tex]2x^2-12x+16+x-4=0[/tex]
Combine like terms:
[tex]2x^2-11x+12=0[/tex]
Compare this to [tex]ax^2+bx+c=0[/tex]
[tex]a=2[/tex]
[tex]b=-11[/tex]
[tex]c=12[/tex]
The quadratic formula is
[tex]x=\frac{-b \pm \sqrt{b^2-4ac}}{2a}[/tex]
{Plug in our numbers:
[tex]x=\frac{11 \pm \sqrt{(-11)^2-4(2)(12)}}{2(2)}[/tex]
[tex]x=\frac{11 \pm \sqrt{121-96}}{4}[/tex]
[tex]x=\frac{11 \pm \sqrt{25}}{4}[/tex]
[tex]x=\frac{11 \pm 5}{4}[/tex]
[tex]x=\frac{11+5}{4} \text{ or } \frac{11-5}{4}[/tex]
[tex]x=\frac{16}{4} \text{ or } \frac{6}{4}[/tex]
[tex]x=4 \text{ or } \frac{3}{2}[/tex]
Using 2y+x=4 let's find the correspond y-coordinates.
If x=4:
2y+4=4
Subtract 4 on both sides:
2y=0
Divide both sides by 2:
y=0
So we have (4,0) is a point of intersection.
If x=3/2
2y+(3/2)=4
Subtract (3/2) on both sides:
2y=4-(3/2)
2y=5/2
Divide 2 on both sides:
y=5/4
The other intersection is (3/2 , 5/4).