Respuesta :

lucic

Answer:

[tex]y=2(\frac{1}{2} )^x[/tex]

Step-by-step explanation:

Given the exponential function as

[tex]y=ab^x[/tex]

substitute both points in the equation above

point (-3,16) will be

[tex]16=ab^{-3}[/tex]

point (-1,4) will be

[tex]4=ab^{-1}[/tex]

make a the subject of the formula in both equations above

[tex]a=\frac{16}{b^{-3} } \\\\\\a=\frac{4}{b^{-1} }[/tex]

This means

[tex]=\frac{16}{b^{-3} } =\frac{4}{b^{-1} }[/tex]

Cross multiply as;

[tex]16b^{-1} =4b^{-3}[/tex]

Divide by 4 both sides to get

[tex]4b^{-1} =b^{-3}[/tex]

Divide by b^-1 both sides

[tex]\frac{4b^{-1} }{b^{-1} } =\frac{4b^{-3} }{b^{-1} } \\\\\\4=b^{-2} \\\\\\4=\frac{1}{b^2} \\\\\\b^2=\frac{1}{4} \\\\\\b=\sqrt{\frac{1}{4} } =\frac{1}{2}[/tex]

Find value of a

[tex]4=ab^{-1} \\\\4=a*(\frac{1}{2})^{-1}  \\\\\\4=a*2\\\\2=a[/tex]

Hence

a=2  and b=1/2 thus write the equation as;

[tex]y=ab^x\\\\\\y=2(\frac{1}{2} )^x[/tex]

Answer:

f(x)=2(0.5)^x

Step-by-step explanation:

ACCESS MORE