Answer:
m∠P=70°, m∠T=20°, m∠SKP=40°, and m∠MKT=70°.
Step-by-step explanation:
Given information: △PST, m∠S=90°, M∈ segment PT, segment PM ≅ MT, MK ⊥ PT, m∠SPK/m∠KPM = 5/2.
Let the measure of m∠SPK and ∠KPM are 5x° and 2x° respectively.
In triangle PKM and TKM,
[tex]KM\cong KM[/tex] (Common side)
[tex]\anlge KMP\cong \angle KMT[/tex] (MK ⊥ PT)
[tex]PM\cong MT[/tex] (Given)
By SAS postulate,
[tex]\trianlge KMP\cong \triangle KMT[/tex]
[tex]\anlge KPM\cong \triangle KTM[/tex] (CPCTC)
[tex]\triangle KTM=2x[/tex]
According to angle sum property, the sum of interior angles of a triangle is 180°.
Use angle sum property in triangle SPT,
[tex]\angle P+\angle T+\angle S=180^{\circ}[/tex]
[tex](5x+2x)^{\circ}+(2x)^{\circ}+(90)^{\circ}=180^{\circ}[/tex]
[tex]9x^{\circ}=180^{\circ}-90^{\circ}[/tex]
[tex]9x^{\circ}=90^{\circ}[/tex]
[tex]x=10[/tex]
The value of x is 10.
[tex]\angle P=5x+2x=7x\Rightarrow 7\times 10=70^{\circ}[/tex]
[tex]\angle T=2x\Rightarrow 2\times 10=20^{\circ}[/tex]
Therefore, m∠P=70° and m∠T=20°.
Use angle sum property in triangle SPK.
[tex]\angle S+\angle SPK\angle SKP=180^{\circ}[/tex]
[tex]\angle SKP=180^{\circ}-\angle S-\angle SPK[/tex]
[tex]\angle SKP=180^{\circ}-90^{\circ}-(5x)^{\circ}[/tex]
[tex]\angle SKP=90^{\circ}-(5\times 10)^{\circ}[/tex]
[tex]\angle SKP=90^{\circ}-50^{\circ}=40^{\circ}[/tex]
Therefore the measure of ∠SKP is 40°.
Use angle sum property in triangle MKT.
[tex]\angle T+\angle M+\angle K=180^{\circ}[/tex]
[tex]20^{\circ}+90^{\circ}+\angle K=180^{\circ}[/tex]
[tex]110^{\circ}+\angle K=180^{\circ}[/tex]
[tex]\angle K=180^{\circ}-110^{\circ}[/tex]
[tex]\angle K=70^{\circ}[/tex]
Therefore, the measure of ∠MKT is 70°.