ns620
contestada

How can I solve this.
Given: △PST, m∠S=90°, M∈ segment PT,
segment PM ≅ MT,
MK ⊥ PT
m∠SPK/m∠KPM = 5/2

Find: m∠P, m∠T, m∠SKP, and m∠MKT

How can I solve this Given PST mS90 M segment PT segment PM MT MK PT mSPKmKPM 52 Find mP mT mSKP and mMKT class=

Respuesta :

Answer:

I have that question too for my school work. Can u help me Pls?

Answer:

m∠P=70°, m∠T=20°, m∠SKP=40°, and m∠MKT=70°.

Step-by-step explanation:

Given information: △PST, m∠S=90°, M∈ segment PT, segment PM ≅ MT, MK ⊥ PT, m∠SPK/m∠KPM = 5/2.

Let the measure of m∠SPK and ∠KPM are 5x° and 2x° respectively.

In triangle PKM and TKM,

[tex]KM\cong KM[/tex]                (Common side)

[tex]\anlge KMP\cong \angle KMT[/tex]                (MK ⊥ PT)

[tex]PM\cong MT[/tex]           (Given)

By SAS postulate,

[tex]\trianlge KMP\cong \triangle KMT[/tex]

[tex]\anlge KPM\cong \triangle KTM[/tex]              (CPCTC)

[tex]\triangle KTM=2x[/tex]

According to angle sum property, the sum of interior angles of a triangle is 180°.

Use angle sum property in triangle SPT,

[tex]\angle P+\angle T+\angle S=180^{\circ}[/tex]

[tex](5x+2x)^{\circ}+(2x)^{\circ}+(90)^{\circ}=180^{\circ}[/tex]

[tex]9x^{\circ}=180^{\circ}-90^{\circ}[/tex]

[tex]9x^{\circ}=90^{\circ}[/tex]

[tex]x=10[/tex]

The value of x is 10.

[tex]\angle P=5x+2x=7x\Rightarrow 7\times 10=70^{\circ}[/tex]

[tex]\angle T=2x\Rightarrow 2\times 10=20^{\circ}[/tex]

Therefore, m∠P=70° and m∠T=20°.

Use angle sum property in triangle SPK.

[tex]\angle S+\angle SPK\angle SKP=180^{\circ}[/tex]

[tex]\angle SKP=180^{\circ}-\angle S-\angle SPK[/tex]

[tex]\angle SKP=180^{\circ}-90^{\circ}-(5x)^{\circ}[/tex]

[tex]\angle SKP=90^{\circ}-(5\times 10)^{\circ}[/tex]

[tex]\angle SKP=90^{\circ}-50^{\circ}=40^{\circ}[/tex]

Therefore the measure of ∠SKP is 40°.

Use angle sum property in triangle MKT.

[tex]\angle T+\angle M+\angle K=180^{\circ}[/tex]

[tex]20^{\circ}+90^{\circ}+\angle K=180^{\circ}[/tex]

[tex]110^{\circ}+\angle K=180^{\circ}[/tex]

[tex]\angle K=180^{\circ}-110^{\circ}[/tex]

[tex]\angle K=70^{\circ}[/tex]

Therefore, the measure of ∠MKT is 70°.

ACCESS MORE