Given:
Rivet diameter, [tex]d_{r}[/tex] = 1.872 cm
Hole diameter, [tex]d_{h}[/tex] = 1.870 cm
Temperature, [tex]T_{2}[/tex] = 22 °C
Formula Used:
[tex]\alpha = \frac{\Delta d}{d\times \Delta T}[/tex]
where,
[tex]\alpha[/tex] = coefficient of linear expansion
[tex]\Delta d[/tex] = change in diameter = [tex]d_{h} - d_{r}[/tex]
[tex]\Delta T}[/tex] = change in temperature = [tex]T_{2} - T_{1}[/tex]
Solution:
we know that coefficient of linear expansion of steel, [tex]\alpha[/tex] = [tex]12\times 10^{-6}/^{\circ}C[/tex]
Using the above formula :
[tex]\alpha = \frac{\Delta d}{d\times \Delta T}[/tex]
[tex]12\times 10^{-6}/^{\circ}C[/tex] = \frac{1.870 - 1.872}{1.872\times \T_{2} - T_{1}}[/tex]
[tex]T_{2} - 20/^{\circ}C[/tex] = \frac{1.870 - 1.872}{12\times 10^{-6}}}[/tex]
[tex]T_{2} = -67.03/^{\circ}C[/tex]
Therefore, the rivet must be cooled to [tex]-67.03/^{\circ}C[/tex]