Answer:6773.54 V/m
Explanation:
Given data
Distance between two rings(x)=25cm
Charge on each ring(Q)=[tex]50\times 10^{-9}[/tex] C
diameter of ring(d)=10 cm
Now Electric field strength at distance x from ring=[tex]\frac{kxQ}{\left ( x^{2}+r^{2}\right )^{1.5}}[/tex]
Where K=coulomb's constant=[tex]\frac{1}{4\pi \epsilon_0}[/tex]=8.98\times 10^{9]
Now electric field strength at midpoint between two rings is zero
because one is pointing towards positive x direction and other in negative z direction.
but electric field strength at center of ring due to other ring is given by
[tex]\left ( E\right )_{ring}[/tex]=[tex]\frac{kxQ}{\left ( x^2+r^{2}\right )^{1.5}}[/tex]
[tex]\left ( E\right )_{ring}[/tex]=[tex]\frac{8.98\times 10^{9}\times 0.25\times 50\times 10{-9}}\left ( 0.25^2+0.05^{2}\right )}^{1.5}}[/tex]
[tex]\left ( E\right )_{ring}[/tex]=6773.54 V/m