Answer:
a)T=12.77°C
b) t=83.38 min
Explanation:
[tex]T_i[/tex]=5°C
After 25 min, T=10°C
Air temperature [tex]T_s[/tex]=20°C
We know that cold drink will cool because its surrounding temperature is high .
From Newton's law of cooling
[tex]\dfrac{dT}{dt}= K(T-T_s)[/tex]
Where K is the constant,T is the temperature at any time t and [tex]T_s[/tex] is the surrounding temperature.
[tex]\dfrac{dT}{dt}=K(T-20)[/tex]
By solving above differential equation
[tex]T=20-15e^{Kt}[/tex]
When t=25 min T=10°C
[tex]10=20-15e^{K\times 25}[/tex]
[tex]K=\dfrac{1}{25}\ln\dfrac{2}{3}[/tex]
(a) When t=45 min
[tex]T=20-15e^{45\times \dfrac{1}{25}\ln\dfrac{2}{3}}[/tex]
T=12.77°C
(b) When T=16°C
[tex]16=20-15e^{t\times \dfrac{1}{25}\ln\dfrac{2}{3}}[/tex]
t=83.38 min