Answer:
[tex]y(t)=e^{.428 t}(8cos\0.285 t+29.55sin\0.285t)[/tex]
Step-by-step explanation:
Given:
49y''+42y'+13y=0 ,y(0)=8,y'(0)=5
Lets take a y''+by'+c=0 is a differential equation.
So auxiliary equation will be
[tex]a m^2+b m+c=0[/tex]
So according to given problem our auxiliary equation will be
[tex]49 m^2+42 m+13=0[/tex]
Then the roots of above equation
[tex]m=\dfrac{-b\pm \sqrt{b^2-4ac}}{2a}[/tex]
But D in the above question is negative so the roots of equation will be imaginary ([tex]D=b^2-4ac[/tex]).
By solving m= -0.428+0.285i , -0.428-0.285i,
m=[tex]\alpha \pm \beta[/tex]
So [tex]y(t)=e^{\alpha t}(C_1cos\beta t+C_2sin\beta t)[/tex]
[tex]y(t)=e^{-0.428 t}(C_1cos\0.285 t+C_2sin\0.285t)[/tex]
So now by using giving condition we will find
[tex]C_1=8 ,C_2= 29.55[/tex]
So [tex]y(t)=e^{-0.428 t}(8cos\0.285 t+29.55sin\0.285t)[/tex]