Respuesta :

Answer:

[tex]y(t)=e^{.428 t}(8cos\0.285 t+29.55sin\0.285t)[/tex]

Step-by-step explanation:

Given:

  49y''+42y'+13y=0    ,y(0)=8,y'(0)=5  

Lets take  a y''+by'+c=0  is a differential equation.

So auxiliary equation will be

  [tex]a m^2+b m+c=0[/tex]  

So according to given problem our  auxiliary equation will be

    [tex]49 m^2+42 m+13=0[/tex]  

Then the roots of above equation

[tex]m=\dfrac{-b\pm \sqrt{b^2-4ac}}{2a}[/tex]

  But D in the above question is negative so the roots of equation will be imaginary ([tex]D=b^2-4ac[/tex]).

By solving m= -0.428+0.285i  , -0.428-0.285i,

  m=[tex]\alpha \pm \beta[/tex]

So [tex]y(t)=e^{\alpha t}(C_1cos\beta t+C_2sin\beta t)[/tex]

[tex]y(t)=e^{-0.428 t}(C_1cos\0.285 t+C_2sin\0.285t)[/tex]

So now by using giving condition we will find

[tex]C_1=8 ,C_2= 29.55[/tex]

So  [tex]y(t)=e^{-0.428 t}(8cos\0.285 t+29.55sin\0.285t)[/tex]