Respuesta :

Answer:

[tex]y=9e^{-7x}cos(6x)+\frac{71}{6}e^{-7x}sin(6x)[/tex]

Step-by-step explanation:

The Given diffrential equation can be written as follows

[tex](D^{2}+14D+85)y=0[/tex]

Solving the auxiliary equation we get

[tex]D^{2}+14D+85=0[/tex]

Comparing with the standard quadratic equation [tex]ax^{2}+bx+c=0[/tex] we get

[tex]D=\frac{-b\pm \sqrt{b^{2}-4ac}}{2a}[/tex]

Using the values we get the roots as [tex]-7\pm 6i[/tex]

The roots are imaginary and conjugate

For a auxillary equation with roots [tex]a\pm bi[/tex] the solution is given by

[tex]y=c_{1}e^{ax}cos(bx)+c_{2}e^{ax}sin(bx)[/tex]

Applying values we get the solution of the equation as

[tex]y=c_{1}e^{-7x}cos(6x)+c_{2}e^{-7x}sin(6x)[/tex]....................(i)

here [tex]c_{1},c_{2)[/tex] are constants whose values shall be obtained using the given boundary conditions y(0) = 9 ; y'(0) = 8

In equation i putting x = 0 we get

9 =[tex]c_{1}[/tex]

Now we have

[tex]y'=-7c_{1}e^{-7x}cos(6x)-6c_{1}e^{-7x}sin(6x)-7c_{2}e^{-7x}sin(6x)+6c_{2}e^{-7x}cos(6x)[/tex]

Now y'(0) = 8

Thus we get

[tex]8=-7c_{1}+6c_{2}[/tex]

Solving for [tex]c_{2}[/tex] we get

[tex]c_{2}=71/6[/tex]

Thus the solution becomes

[tex]y=9e^{-7x}cos(6x)+\frac{71}{6}e^{-7x}sin(6x)[/tex]

ACCESS MORE