Find the x-intercepts (if any) for the graph of the quadratic function below. 6 y+4=(x-2)^2 a) (0, 0) and (-4, 0) b) (0, 0) and (4, 0) c) (0, 0) d) (-4, 0) and (4, 0) e) none

Respuesta :

Answer:

The function has two x-intercepts at (0,0) and (4,0).

Step-by-step explanation:

Consider the provided function.

[tex]y+4=(x-2)^2[/tex]

The x-intercepts are the point, where y is 0.

To find x-intercepts, substitute y = 0 in the provided equation and solve for x.

[tex]0+4=(x-2)^2[/tex]

[tex]4=(x-2)^2[/tex]

[tex]\pm\sqrt{4}=x-2[/tex]

[tex]\pm2=x-2[/tex]

[tex]2=x-2[/tex] or [tex]-2=x-2[/tex]

[tex]2+2=x[/tex] or [tex]-2+2=x[/tex]

[tex]4=x[/tex] or [tex]0=x[/tex]

Therefore, the function has two x-intercepts at (0,0) and (4,0).

ACCESS MORE