A crystalline grain of nickel in a metal plate is situated so that a tensile load is oriented along the [111] crystal direction (a) If the applied stress if 0.45 MPa, what will be the resolved shear stress, tRss, along the [101] direction within the (11 T) plane? (b) What tensile stress is required to produce a critical resolved shear stress, TcRss of 0.242 MPa

Respuesta :

Given:

Applied stress, [tex]\sigma = 0.45 MPa[/tex]

Critical Resolved Stress,  [tex]T_{cRss}= 0.242 MPa[/tex]

Solution:

a). According to the question, orientation of tensile load is along [1 1 1],

[tex]\sigma = 0.45 MPa[/tex]

Now, for resolved shear stress,  [tex]\t_{Rss}[/tex] along [1 0 1] within (1 1 T)

let  '[tex]\theta[/tex]' be the angle between [1 1 1] and [1 0 1], then by coordinate formula:

[tex]cos\theta[/tex] = [tex]\frac{1\times 1 + 1\times 0 + 1\times 1}{\sqrt{1^{2}+1^{2}+1^{2}\sqrt{1^{2}+0^{2}+1^{2}}}}[/tex]

[tex]cos\theta[/tex] = [tex]\sqrt{\frac{2}{3}}[/tex]

let  '[tex]\phi[/tex]' be the angle between [1 1 1] and [1  1 1], then by coordinate formula:

[tex]cos\phi  = \frac{1\times 1 + 1\times 1 + 1\times 1}{\sqrt{1^{2}+1^{2}+1^{2}\sqrt{1^{2}+1^{2}+1^{2}}}}[/tex]

[tex]cos\phi[/tex] = 1

Now, for the resolved components along [1 0 1]

[tex]\t_{Rss}[/tex]  = [tex]\sigma  cos\theta cos\phi[/tex]

[tex]\t_{Rss}[/tex] = [tex]0.45\times 10^{6}\times \sqrt{\frac{2}{3}}\times 1[/tex] = 0.3673 MPa

b).  For required tensile stress to produce  [tex]T_{cRss}= 0.242 MPa[/tex]:

[tex]\sigma _{1} = \frac{T_{cRss}}{cos\theta  cos\phi }[/tex]

[tex]\sigma _{1} = \frac{0.242\times 10^{6}}{\sqrt{\frac{2}{3}}\times 1}[/tex]

[tex]\sigma _{1} = 0.2964 MPa[/tex]

The resolved shear stress along the [101] direction is 0.3673 MPa and the tensile stress is required to produce a critical resolved is 0.2964 MPa.

What is a lattice unit cell?

The symmetrical 3-D structural arrangement of the ions, atoms, or molecules inside a crystalline lattice solid as a point.

A crystalline grain of nickel in a metal plate is situated so that a tensile load is oriented along the [111] crystal direction.

(a) If the applied stress is 0.45 MPa. Then the resolved shear stress, along the [101] direction within the (11T) plane will be

The θ be the angle between [101] and (111) will be

[tex]\rm cos\ \theta = \dfrac{1*1+1*0+1*1}{\sqrt{1^2+1^2+1^2}\sqer{1^2+0^2+1^2}}\\\\\\cos\ \theta = \sqrt{ \dfrac{2}{3}}[/tex]

And ∅ be the angle between [111] and [111], then we have

[tex]\rm cos\ \phi= \dfrac{1*1+1*1+1*1}{\sqrt{1^2+1^2+1^2}\sqer{1^2+1^2+1^2}}\\\\\\cos\ \phi= 1[/tex]

Now, for the resolved components along [101], we have

[tex]\rm = \sigma cos \ \theta \ \ cos \ \phi\\\\= 0.45 *10^6*\sqrt{\dfrac{2}{3}}*1= 0.3673 \ \ MPa[/tex]

(b) The tensile stress is required to produce a critical resolved shear stress of 0.242 MPa will be

[tex]\rm \sigma _1 = \dfrac{shear\ stress}{cos\ \theta \ cos \ \phi}\\\\\\\sigma _1 = \dfrac{0.242*10^6}{\sqrt{\frac{2}{3}} * 1}\\\\\\\sigma _1 = 0.2964 \ MPa[/tex]

More about the crystalline lattice link is given below.

https://brainly.com/question/10951564