Respuesta :
Given:
Shaft Power, P = 7.46 kW = 7460 W
Speed, N = 1200 rpm
Shearing stress of shaft, [tex]\tau _{shaft}[/tex] = 30 MPa
Shearing stress of key, [tex]\tau _{key}[/tex] = 240 MPa
width of key, w = [tex]\frac{d}{4}[/tex]
d is shaft diameter
Solution:
Torque, T = [tex]\frac{P}{\omega }[/tex]
where,
[tex]\omega = \frac{2\pi N}{60}[/tex]
[tex]T = \frac{7460}{\frac{2\pi (1200 )}{60}}[/tex] = 59.365 N-m
Now,
[tex]\tau _{shaft} = \tau _{max} = \frac{2T}{\pi (\frac{d}{2})^{3}}[/tex]
[tex]30\times 10^{6} = \frac{2\times 59.365}{\pi (\frac{d}{2})^{3}}[/tex]
d = 0.0216 m
Now,
w = [tex]\frac{d}{4}[/tex] = [tex]\frac{0.02116}{4}[/tex] = 5.4 mm
Now, for shear stress in key
[tex]\tau _{key}[/tex] = [tex]\frac{F}{wl}[/tex]
we know that
T = [tex]F \times r[/tex] = F. [tex]\frac{d}{2}[/tex]
⇒ [tex]\tau _{key}[/tex] = [tex]\frac{\frac{T}{\frac{d}{2}}}{wl}[/tex]
⇒ [tex]240\times 10^{6}[/tex] = [tex]\frac{\frac{59.365}{\frac{0.0216}{2}}}{0.054l}[/tex]
length of the rectangular key, l = 4.078 mm
Answer:
The length of the rectangular key is 0.4244 m
Explanation:
Given that,
Power = 7.46 kW
Speed = 1200 rpm
Shearing stress of shaft = 30 MPa
Mini shearing stress of key = 240 MPa
We need to calculate the torque
Using formula of power
[tex]P=\dfrac{2\pi NT}{60}[/tex]
Where, P = power
N = number of turns
Put the value into the formula
[tex]7.46\times10^{3}=\dfrac{2\pi\times1200\times T}{60}[/tex]
[tex]T=\dfrac{7.46\times10^{3}\times60}{2\pi\times1200}[/tex]
[tex]T=59.36\ N-m[/tex]
We need to calculate the distance
[tex]\tau_{max}=\dfrac{16T}{\pi d^3}[/tex]
[tex]d^3=\dfrac{16\times59.36}{\pi\times30}[/tex]
[tex]d=(10.077)^{\dfrac{1}{3}}[/tex]
[tex]d=2.159\ m[/tex]
Width of key is one fourth of the shaft diameter
[tex]W=\dfrac{1}{4}\times2.159[/tex]
[tex]W=0.53975\ m[/tex]
The shear stress induced in key
[tex]\tau_{max}=\dfrac{F}{Wl}[/tex]
[tex]\tau_{max}=\dfrac{\dfrac{T}{\dfrac{d}{2}}}{wl}[/tex]
[tex]\tau_{max}=\dfrac{2T}{dWl}[/tex]
[tex]240=\dfrac{2\times59.36}{2.159\times0.53975\times l}[/tex]
[tex]l=\dfrac{2\times59.36}{2.159\times0.53975\times240}[/tex]
[tex]l=0.4244\ m[/tex]
Hence, The length of the rectangular key is 0.4244 m
