Find an equation for a circle satisfying the given conditions. (a) Center (-1, 4), passes through (3, 7) (b) The points (7, 13) and (-3, -11) are at the ends of a diameter.

Respuesta :

Answer:

Step-by-step explanation:

In order to find the equations we need the circle's general equation:

[tex](x-h)^{2}+(y-k)^{2}=r^2[/tex] where:

(h,k) is the center and 'r' is the radius.

A. Because the center is (-1,4) then h=-1 and k=4.

Now we can find the radius as:

[tex]distance=\sqrt{(x2-x1)^{2}+(y2-y1)^{2}}[/tex]

[tex]distance=\sqrt{(3-(-1))^{2}+(7-4)^{2}}[/tex]

[tex]distance=5[/tex] so we have r=5

Then the equation is [tex](x+1)^{2}+(y-4)^{2}=25[/tex]

B. Because we have two points defining a diameter we can find the radius as follows:

[tex]diameter=\sqrt{(x2-x1)^{2}+(y2-y1)^{2}}[/tex]

[tex]diameter=\sqrt{(7-(-3))^{2}+(13-(-11))^{2}}[/tex]

[tex]diameter=26[/tex]

[tex]radius=26/2=13[/tex]

Now let's find the center of the circle as follows:

[tex]C=(\frac{x1+x2}{2} , \frac{y1+y2}{2})[/tex]

[tex]C=(\frac{7-3}{2} , \frac{13-11}{2})[/tex]

[tex]C=(2,1)[/tex]

Then the equation is [tex](x-2)^{2}+(y-1)^{2}=169[/tex]

ACCESS MORE
EDU ACCESS