This extreme value problem has a solution with both a maximum value and a minimum value. Use Lagrange multipliers to find the extreme values of the function subject to the given constraint. f(x, y) = 4x + 8y; x2 + y2 = 20

Respuesta :

Answer:

(2,4) and (-2,-4).

Step-by-step explanation:

We consider the system

[tex]\left \{ {{gra(f(x,y))= λ gra(g(x,y))} \atop {x^{2}+y^{2}=20}} \right.[/tex]

where g(x,y)= [tex]x^{2} +y^{2} = 20[/tex]

gra(f(x,y))= (4,8)

gra(g(x,y))=(2x,2y)

So,

[tex]\left \{ {{(4,8)=λ(2x,2y)} \atop {x^{2}+y^{2}=20}} \right.[/tex]

We have then that 4=2λx and 8=2λy. Dividing the second equation by 2 at both sides we obtain 4=λy. So, 4=2λx and 4=λy, we equalize both equations:

2λx=λy ⇔ 2x=y.

We replace that y value in the constraint equation:

[tex]x^{2} +(2x)^{2} = 20[/tex]

[tex]x^{2} + 4x^{2}= 20[/tex]

[tex]5x^{2}= 20[/tex]

[tex]x^{2}= 4[/tex]

[tex]x= 2[/tex] and

[tex]x= -2[/tex]

With this two x values and the y equation y= 2x we can obtain the extremes: (2,4) and (-2,-4).