Answer:
(2,4) and (-2,-4).
Step-by-step explanation:
We consider the system
[tex]\left \{ {{gra(f(x,y))= λ gra(g(x,y))} \atop {x^{2}+y^{2}=20}} \right.[/tex]
where g(x,y)= [tex]x^{2} +y^{2} = 20[/tex]
gra(f(x,y))= (4,8)
gra(g(x,y))=(2x,2y)
So,
[tex]\left \{ {{(4,8)=λ(2x,2y)} \atop {x^{2}+y^{2}=20}} \right.[/tex]
We have then that 4=2λx and 8=2λy. Dividing the second equation by 2 at both sides we obtain 4=λy. So, 4=2λx and 4=λy, we equalize both equations:
2λx=λy ⇔ 2x=y.
We replace that y value in the constraint equation:
[tex]x^{2} +(2x)^{2} = 20[/tex]
[tex]x^{2} + 4x^{2}= 20[/tex]
[tex]5x^{2}= 20[/tex]
[tex]x^{2}= 4[/tex]
[tex]x= 2[/tex] and
[tex]x= -2[/tex]
With this two x values and the y equation y= 2x we can obtain the extremes: (2,4) and (-2,-4).