Answer:
Law of Cosines; A ≈ 61°, B ≈ 89°, C ≈ 30°
Step-by-step explanation:
In this problem the given values are the length sides of the triangle, therefore, the triangle should be solved by beginning with the Law of Cosines
step 1
Applying the law of cosines find the value of angle C
we know that
[tex]c^{2}=a^{2}+b^{2}-2(a)(b)cos(C)[/tex]
we have
[tex]a = 8, b = 7, c = 4[/tex]
substitute the values and solve for cos(C)
[tex]4^{2}=8^{2}+7^{2}-2(8)(7)cos(C)[/tex]
[tex]16=64+49-112cos(C)[/tex]
[tex]16=113-112cos(C)[/tex]
[tex]112cos(C)=113-16[/tex]
[tex]cos(C)=97/112[/tex]
[tex]C=arccos(97/112)=30\°[/tex]
step 2
Applying the law of cosines find the value of angle B
we know that
[tex]b^{2}=a^{2}+c^{2}-2(a)(c)cos(B)[/tex]
we have
[tex]a = 8, b = 7, c = 4[/tex]
substitute the values and solve for cos(B)
[tex]7^{2}=8^{2}+4^{2}-2(8)(4)cos(B)[/tex]
[tex]49=64+16-64cos(B)[/tex]
[tex]49=80-64cos(B)[/tex]
[tex]64cos(B)=80-49[/tex]
[tex]cos(B)=31/64[/tex]
[tex]B=arccos(31/64)=61\°[/tex]
step 3
Find the measure of angle A
we know that
The sum of the interior angles of a triangle must be equal to 180 degrees
so
[tex]A+B+C=180\°[/tex]
we have
[tex]C=30\°[/tex]
[tex]B=61\°[/tex]
substitute and solve for A
[tex]A+61\°+30\°=180\°[/tex]
[tex]A+91\°=180\°[/tex]
[tex]A=180\°-91\°=89\°[/tex]