contestada

Given the functions k(x) = 2x^2 − 5 and p(x) = x − 3, find (k ∘ p)(x).

a. (k ∘ p)(x) = 2x^2 − 6x + 4
b. (k ∘ p)(x) = 2x^2 − 12x + 13
c. (k ∘ p)(x) = 2x^2 − 12x + 18
d. (k ∘ p)(x) = 2x2 − 8

Respuesta :

Answer:

(k ∘ p)(x)=2x^2-12x+13

Step-by-step explanation:

(k ∘ p)(x)=k(p(x))

(k ∘ p)(x)=k(x-3)

(k ∘ p)(x)=2(x-3)^2-5

(k ∘ p)(x)=2(x-3)(x-3)-5

Use foil on (x-3)(x-3) or use this as a formula:

(x+a)^2=x^2+2ax+a^2.

(k ∘ p)(x)=k(p(x))

(k ∘ p)(x)=k(x-3)

(k ∘ p)(x)=2(x-3)^2-5

(k ∘ p)(x)=2(x-3)(x-3)-5

(k ∘ p)(x)=2(x^2-6x+9)-5

Distribute: multiply terms inside ( ) by 2:

(k ∘ p)(x)=2x^2-12x+18-5

(k ∘ p)(x)=2x^2-12x+13

The composite function is [tex]k(p(x))=2x^{2} -12x+13[/tex]

Option b is correct.

Composite function :

Given function are,

               [tex]k(x)=2x^{2} -5,p(x)=(x-3)[/tex]

We have to find composite function [tex]k(p(x))[/tex].

                  [tex]k(p(x))=k(x-3)\\\\k(p(x))=2(x-3)^{2}-5\\ \\k(p(x))=2(x^{2} +9-6x)-5\\\\k(p(x))=2x^{2} +18-12x-5\\\\k(p(x))=2x^{2} -12x+13[/tex]

Thus, the composite function is [tex]k(p(x))=2x^{2} -12x+13[/tex]

Learn more about the composite function here:

https://brainly.com/question/10687170

ACCESS MORE