Answer: [tex]tan(\theta) =-\sqrt{3}[/tex]
Step-by-step explanation:
In this case we know that:
[tex]sin^2(\theta) = \frac{3}{4}[/tex]
To find the value of [tex]cos(\theta)[/tex] we use the following trigonometric identity
[tex]cos^2(\theta)=1-sin^2(\theta)[/tex]
Therefore
[tex]cos^2(\theta)=1-\frac{3}{4}[/tex]
[tex]cos^2(\theta)=\frac{1}{4}[/tex]
[tex]cos(\theta)=\±\sqrt{\frac{1}{4}}[/tex]
[tex]cos(\theta)=\±\frac{1}{2}[/tex]
In the second quadrant [tex]cos(\theta)<0[/tex] and [tex]sin(\theta)>0[/tex]
Then
[tex]cos(\theta)=-\frac{1}{2}[/tex]
[tex]sin(\theta) =\sqrt{\frac{3}{4}}[/tex]
[tex]sin(\theta) =\frac{\sqrt{3}}{2}[/tex]
Remember that:
[tex]tan(\theta) =\frac{sin(\theta)}{cos(\theta)}[/tex]
Finally we have that
[tex]tan(\theta) =\frac{\frac{\sqrt{3}}{2}}{-\frac{1}{2}}[/tex]
[tex]tan(\theta) =-\sqrt{3}[/tex]