Respuesta :
Answer:
[tex]\left(\dfrac{7}{2},\ 1\right)[/tex]
Step-by-step explanation:
The formula of a midpoint:
[tex]\left(\dfrac{x_1+x_2}{2},\ \dfrac{y_1+y_2}{2}\right)[/tex]
We have the points J(13, 8) and K(-6, -6).
Substitute:
[tex]M_{JK}=\left(\dfrac{13+(-6)}{2},\ \dfrac{8+(-6)}{2}\right)=\left(\dfrac{7}{2},\ \dfrac{2}{2}\right)=\left(\dfrac{7}{2},\ 1\right)[/tex]
Answer: This is accomplished by averaging the x and y coordinates.
So the midpoint's x coordinate is found as (13+-6)/2 = 3.5
Similarly, the y coordinate is (8+-6)/2 = 1
So the point is (3.5,1)
Step-by-step explanation: