Answer:
[tex]y=3e^{-4t}[/tex]
Step-by-step explanation:
[tex]y''+5y'+4y=0[/tex]
Applying the Laplace transform:
[tex]\mathcal{L}[y'']+5\mathcal{L}[y']+4\mathcal{L}[y']=0[/tex]
With the formulas:
[tex]\mathcal{L}[y'']=s^2\mathcal{L}[y]-y(0)s-y'(0)[/tex]
[tex]\mathcal{L}[y']=s\mathcal{L}[y]-y(0)[/tex]
[tex]\mathcal{L}[x]=L[/tex]
[tex]s^2L-3s+5sL-3+4L=0[/tex]
Solving for [tex]L[/tex]
[tex]L(s^2+5s+4)=3s+3[/tex]
[tex]L=\frac{3s+3}{s^2+5s+4}[/tex]
[tex]L=\frac{3(s+1)}{(s+1)(s+4)}[/tex]
[tex]L=\frac3{s+4}[/tex]
Apply the inverse Laplace transform with this formula:
[tex]\mathcal{L}^{-1}[\frac1{s-a}]=e^{at}[/tex]
[tex]y=3\mathcal{L}^{-1}[\frac1{s+4}]=3e^{-4t}[/tex]