Let [tex]x[/tex] and [tex]x+1[/tex] be these consecutive integers. For some base [tex]b[/tex], we can write
[tex](x_{10})^2=220_b=2b^2+2b[/tex]
[tex]((x+1)_{10})^2=251_b=2b^2+5b+1[/tex]
If
[tex]x^2=2b^2+2b[/tex]
then
[tex]x^2+1=2b^2+2b+1[/tex]
Now,
[tex]x^2+2x+1=2b^2+5b+1[/tex]
[tex]2x+2b^2+2b+1=2b^2+5b+1[/tex]
[tex]\implies2x=3b[/tex]
Squaring both sides gives
[tex]4x^2=9b^2[/tex]
and so
[tex]4(2b^2+2b)=9b^2[/tex]
[tex]\implies8b^2+8b=9b^2[/tex]
[tex]\implies b^2-8b=0\implies\boxed{b=8}[/tex]
(because the base has to be non-zero)