Answer:
The only integer solution is n1=2
Step-by-step explanation:
Let's find the answer by using the following equation applied to quadratic polynomials with the form [tex]an^{2}+bn+c=0[/tex]:
[tex]n=\frac{-b\±\sqrt{b^{2}-4ac}}{2a}[/tex]
For our case [tex]2n^{2}-3n-2=0[/tex], a=2, b=-3, and c=-2, so:
[tex]n=\frac{-(-3)\±\sqrt{(-3)^{2}-(4*2*(-2))}}{2*2}[/tex]
[tex]n=\frac{3\±\sqrt{9+16}}{4}[/tex]
[tex]n=\frac{3\±5}{4}[/tex]
[tex]n1=\frac{3+5}{4}=2[/tex]
[tex]n2=\frac{3-5}{4}=-0.5[/tex]
In conclusion, although there are 2 roots (n1, n2), only one of them is an integer, which is n1=2.