Respuesta :
The quadcopter's average velocity is given in terms of change in position by
[tex]\vec v_{\rm av}=\dfrac{\Delta x}{\Delta t}\,\vec\imath+\dfrac{\Delta y}{\Delta t}\,\vec\jmath[/tex]
where [tex]\Delta x=x_f-x_i[/tex], the difference in the quadcopter's final and initial positions and [tex]\Delta t=(1.60-0)\,\mathrm s=1.60\,\mathrm s[/tex].
The [tex]x[/tex]-component of the average velocity is 2.70 m/s, so
[tex]2.70\dfrac{\rm m}{\rm s}=\dfrac{x_f-(-1.75\,\mathrm m)}{1.60\,\rm s}\implies \boxed{x_f=2.57\,\mathrm m}[/tex]
and the [tex]y[/tex]-component is -2.50 m/s, so
[tex]-2.50\dfrac{\rm m}{\rm s}=\dfrac{y_f-(-5.70\,\mathrm m)}{1.60\,\rm s}\implies\boxed{y_f=-9.70\,\mathrm m}[/tex]
The coordinates X and Y at t = 1.60 seconds of the quadcopter are 4.32 m and - 9.70 m respectively.
Recall :
Distance = Speed × time
X - coordinate:
- Initial position at t = 0 ; [tex] X_i = - 1.75 m [/tex]
- Average velocity = 2.70 m/s
- At t = 1.60 s
- Distance moved = 2.70 m/s × 1.60 s = 4.32 m
- Distance moved for t = 1.60 s
- Initial position + distance moved
- -1.75 + 4.32 = 2.57 m
Y - coordinate :
- Initial position at t = 0 ; [tex] Y_i = - 5.70 m [/tex]
- Average velocity = -2.50 m/s
- Distance moved for t = 1.60 s
- Distance moved = - 2.50m/s × 1.60 s = - 4.00 m
- Distance moved for t= 1.60 s
- Initial position + distance moved
- -5.70 + (-4.00) = - 9.70 m
Therefore, the x and y coordinate of the quadcopter are : 2.57 m and - 9.70 m respectively.
Learn more : https://brainly.com/question/18904995