Respuesta :
Answer:
[tex]\boxed{\text{6.022 $\times 10^{23}$ kg; 2.5 $\times 10^{-4}$\ mol}}[/tex]
Explanation:
1. Mass of 1 mol of bricks
[tex]m = 6.022 \times 10^{23}\text{ bricks} \times \dfrac{\text{4.0 kg}}{\text{ 1 brick}} = 2.4 \times 10^{24}\text{ kg}\\\\\text{The mass of 1 mol of bricks is }\boxed{\textbf{2.4 $\times\mathbf{10^{24}}$ kg}}[/tex]
2. Number of moles
(a) Convert grams to kilograms
[tex]6.0 \times 10^{24}\text{ g} = 6.0 \times 10^{21}\text{ kg}[/tex]
(b) Convert kilograms to moles
[tex]n = 6.0 \times 10^{21}\text{ kg} \times \dfrac{\text{1 mol bricks }}{2.4 \times 10^{24}\text{ kg}} = \text{0.0025 mol bricks}\\\\\text{The mass of the Earth equals the mass of }\boxed{\textbf{0.0025 mol of bricks}}[/tex]
Answer: The mass of 1 mole of brick is [tex]24.088\times 10^{26}g[/tex] and the moles of brick having same mass as earth is 2.49 moles.
Explanation:
We are given:
Mass of a brick = 4.00 kg = 4000 g (Conversion factor: 1 kg = 1000 g)
According to mole concept:
[tex]6.022\time 10^{23}[/tex] number of atoms are contained in 1 mole of an atom.
As, mass of 1 brick is 4000 g
So, mass of [tex]6.022\times 10^{23}[/tex] number of bricks will have = [tex]\frac{4000}{1}\times 6.022\times 10^{23}=24.088\times 10^{26}g[/tex]
Now, calculating the moles of brick having the mass equal to the mass of Earth.
Mass of Earth = [tex]6\times 10^{27}g[/tex]
To calculate the moles of bricks, we apply unitary method, we get:
[tex]24.088\times 10^{26}g[/tex] of mass is occupied by 1 mole of brick
So, [tex]6.0\times 10^{27}g[/tex] of mass will be occupied by [tex]\frac{1}{24.088\times 10^{26}}\times 6.0\times 10^{27}=2.49moles[/tex]
Hence, the mass of 1 mole of brick is [tex]24.088\times 10^{26}g[/tex] and the moles of brick having same mass as earth is 2.49 moles.