Respuesta :

Answer:

  • The two events are independent.

Step-by-step explanation:

By the conditional property we have:

If A and B are two events then A and B are independent if:

                  [tex]P(A|B)=P(A)[/tex]

                               or

                 [tex]P(B|A)=P(B)[/tex]

( since,

if two events A and B are independent then,

[tex]P(A\bigcap B)=P(A)\times P(B)[/tex]

Now we know that:

[tex]P(A|B)=\dfrac{P(A\bigcap B)}{P(B)}[/tex]

Hence,

[tex]P(A|B)=\dfrac{P(A)\times P(B)}{P(B)}\\\\i.e.\\\\P(A|B)=P(A)[/tex] )

Based on the diagram that is given to us we observe that:

Region A covers two parts of the total area.

Hence, Area of Region A= 72/2=36

Hence, we have:

[tex]P(A)=\dfrac{36}{72}\\\\i.e.\\\\P(A)=\dfrac{1}{2}[/tex]

Also,

Region B covers two parts of the total area.

Hence, Area of Region B= 72/2=36

Hence, we have:

[tex]P(B)=\dfrac{36}{72}\\\\i.e.\\\\P(B)=\dfrac{1}{2}[/tex]

and A∩B covers one part of the total area.

i.e.

Area of A∩B=74/4=18

Hence, we have:

[tex]P(A\bigcap B)=\dfrac{18}{72}\\\\i.e.\\\\P(A\bigcap B)=\dfrac{1}{4}[/tex]

Hence, we have:

[tex]P(A|B)=\dfrac{\dfrac{1}{4}}{\dfrac{1}{2}}\\\\i.e.\\\\P(A|B)=\dfrac{2}{4}\\\\i.e.\\\\P(A|B)=\dfrac{1}{2}[/tex]

Hence, we have:

[tex]P(A|B)=P(A)[/tex]

         Similarly we will have:

[tex]P(B|A)=P(B)[/tex]