Help meeeeeeeeeeeeee
![Help meeeeeeeeeeeeee class=](https://us-static.z-dn.net/files/d3d/2a034a553e45ed4f7361a08911fdaa42.png)
Answer: Second Option
[tex]f (x)=\frac{2}{x}[/tex] and [tex]g(x)=\frac{2}{x}[/tex]
Step-by-step explanation:
If we have a function f(x) and its inverse function [tex]f ^ {- 1} (x) = g (x)[/tex]
Then by definition:
[tex](fog) (x) = (gof) (x) = x[/tex]
Notice that the inverse of the function [tex]f (x)=\frac{2}{x}[/tex] is [tex]f ^ {- 1}(x)=\frac{2}{x}[/tex]
then:
If [tex]f (x)=\frac{2}{x}[/tex] and [tex]g(x)=\frac{2}{x}[/tex]
Then:
[tex](fog) (x) =\frac{2}{\frac{2}{x}}[/tex]
[tex](fog) (x) =\frac{2x}{2}[/tex]
[tex](fog) (x) =x[/tex]
The answer is the second option