Respuesta :

The derivative of [tex]f(x,y,z)[/tex] at a point [tex]p_0=(x_0,y_0,z_0)[/tex] in the direction of a vector [tex]\vec a=a_x\,\vec\imath+a_y\,\vec\jmath+a_z\,\vec k[/tex] is

[tex]\nabla f(x_0,y_0,z_0)\cdot\dfrac{\vec a}{\|\vec a\|}[/tex]

We have

[tex]f(x,y,z)=3e^x\cos(yz)\implies\nabla f(x,y,z)=3e^x\cos(yz)\,\vec\imath-3ze^x\sin(yz)\,\vec\jmath-3ye^x\sin(yz)\,\vec k[/tex]

and

[tex]\vec a=-\vec\imath+2\,\vec\jmath+3\,\vec k\implies\|\vec a\|=\sqrt{(-1)^2+2^2+3^2}=\sqrt{14}[/tex]

Then the derivative at [tex]p_0[/tex] in the direction of [tex]\vec a[/tex] is

[tex]3\,\vec\imath\cdot\dfrac{-\vec\imath+2\,\vec\jmath+3\,\vec k}{\sqrt{14}}=-\dfrac3{\sqrt{14}}[/tex]

ACCESS MORE