Answer:
A. number of decayed atoms = 73.197
Step-by-step explanation:
In order to find the answer we need to use the radioactive decay equation:
[tex]N(t)=N0*e^{kt}[/tex] where:
N0=initial radioactive atoms
t=time
k=radioactive decay constant
In our case, when t=0 we have 1,000,000 atoms, so:
[tex]1,000,000=N0*e^{k*0}[/tex]
[tex]1,000,000=N0[/tex]
Now we need to find 'k'. Using the provied information that after 365 days we have 973,635 radioactive atoms, we have:
[tex]973,635=1,000,000*e^{k*365}[/tex]
[tex]ln(973,635/1,000,000)/365=k[/tex]
[tex] -0.0000732=k[/tex]
A. atoms decayed in a day:
[tex]N(t)=1,000,000*e^{-0.0000732t}[/tex]
[tex]N(1)=1,000,000*e^{-0.0000732*1}[/tex]
[tex]N(1)= 999,926.803[/tex]
Number of atoms decayed in a day = 1,000,000 - 999,926.803 = 73.197
B. Because 'k' represents the probability of decay, then the probability that on a given day 51 radioactive atoms decayed is k=0.0000732.