what is the area of the figure. please help show steps

Answer: [tex]143.99\ ft^2[/tex]
Step-by-step explanation:
We need to find the lenght AC and BC of the triangle by applying these identities:
[tex]cos\alpha=\frac{adjacent}{hypotenuse} \\\\sin\alpha=\frac{opposite}{hypotenuse}[/tex]
Then, AC is:
[tex]sin(45\°)=\frac{AC}{24}\\\\AC=24*sin(45\°)\\\\AC=16.97\ ft[/tex]
And BC is:
[tex]cos(45\°)=\frac{BC}{24}\\\\BC=24*cos(45\°)\\\\BC=16.97\ ft[/tex]
The area will be:
[tex]A=\frac{AC*BC}{2}[/tex]
Substituting values, we get:
[tex]A=\frac{(16.97\ ft)(16.97\ ft)}{2}=143.99\ ft^2[/tex]