Respuesta :
Answer:
The surface area of the triangular prism is 468 square centimeters. Therefore the correct option is 4.
Step-by-step explanation:
It is given that the bases are right triangles with perpendicular legs measuring 9 centimeters and 12 centimeters. Using Pythagoras theorem, the third side of the base is
[tex]hypotenuse^2=leg_1^2+leg_2^2[/tex]
[tex]hypotenuse^2=(9)^2+(12)^2[/tex]
[tex]hypotenuse^2=225[/tex]
[tex]hypotenuse=\sqrt{225}[/tex]
[tex]hypotenuse=15[/tex]
The area of a triangle is
[tex]A=\frac{1}{2}\times base \times height[/tex]
Area of the base is
[tex]A_1=\frac{1}{2}\times 9\times 12=54[/tex]
The curved surface area of triangular prism is
[tex]A_2=\text{perimeter of base}\times height[/tex]
[tex]A_2=(9+12+15)\times 10[/tex]
[tex]A_2=9\times 10+12\times 10+15\times 10[/tex]
[tex]A_2=360[/tex]
The surface area of the triangular prism is
[tex]A=2A_1+A_2[/tex]
[tex]A=2(54)+360[/tex]
[tex]A=108+360[/tex]
[tex]A=468[/tex]
The surface area of the triangular prism is 468 square centimeters. Therefore the correct option is 4.