Answer:
Option A) (-14, -4)
Step-by-step explanation:
we know that
If a ordered pair lie on the circumference of a circle , then the ordered pair must satisfy the equation of the circle
we have
[tex](x+10)^{2}+(y+1)^{2}=25[/tex]
Verify each ordered pair
case A) we have (-14, -4)
substitute the value of x and the value of y in the equation and then compare the results
[tex](-14+10)^{2}+(-4+1)^{2}=25[/tex]
[tex](-4)^{2}+(-3)^{2}=25[/tex]
[tex]25=25[/tex] ----> is true
therefore
The ordered pair is on the circumference of the circle
case B) we have (4,14)
substitute the value of x and the value of y in the equation and then compare the results
[tex](4+10)^{2}+(14+1)^{2}=25[/tex]
[tex](14)^{2}+(15)^{2}=25[/tex]
[tex]421=25[/tex] ----> is not true
therefore
The ordered pair is not on the circumference of the circle
case C) we have (-14,4)
substitute the value of x and the value of y in the equation and then compare the results
[tex](-14+10)^{2}+(4+1)^{2}=25[/tex]
[tex](-4)^{2}+(5)^{2}=25[/tex]
[tex]41=25[/tex] ----> is not true
therefore
The ordered pair is not on the circumference of the circle
case D) we have (-4,14)
substitute the value of x and the value of y in the equation and then compare the results
[tex](-4+10)^{2}+(14+1)^{2}=25[/tex]
[tex](6)^{2}+(15)^{2}=25[/tex]
[tex]261=25[/tex] ----> is not true
therefore
The ordered pair is not on the circumference of the circle