contestada

A point on the circumference of the circle with the equation of (x+10)²+(y+1)²=25 is?
A) (-14, -4)
B) (4, 14)
C) (-14, 4)
D) (-4, 14)

Respuesta :

Answer:

Option A) (-14, -4)

Step-by-step explanation:

we know that

If a ordered pair lie on the circumference of a circle , then the ordered pair must satisfy the equation of the circle

we have

[tex](x+10)^{2}+(y+1)^{2}=25[/tex]

Verify each ordered pair

case A) we have  (-14, -4)

substitute the value of x and the value of y in the equation and then compare the results

[tex](-14+10)^{2}+(-4+1)^{2}=25[/tex]

[tex](-4)^{2}+(-3)^{2}=25[/tex]

[tex]25=25[/tex] ----> is true

therefore

The ordered pair is on the circumference of the circle

case B) we have  (4,14)

substitute the value of x and the value of y in the equation and then compare the results

[tex](4+10)^{2}+(14+1)^{2}=25[/tex]

[tex](14)^{2}+(15)^{2}=25[/tex]

[tex]421=25[/tex] ----> is not true

therefore

The ordered pair is not on the circumference of the circle

case C) we have  (-14,4)

substitute the value of x and the value of y in the equation and then compare the results

[tex](-14+10)^{2}+(4+1)^{2}=25[/tex]

[tex](-4)^{2}+(5)^{2}=25[/tex]

[tex]41=25[/tex] ----> is not true

therefore

The ordered pair is not on the circumference of the circle

case D) we have  (-4,14)

substitute the value of x and the value of y in the equation and then compare the results

[tex](-4+10)^{2}+(14+1)^{2}=25[/tex]

[tex](6)^{2}+(15)^{2}=25[/tex]

[tex]261=25[/tex] ----> is not true

therefore

The ordered pair is not on the circumference of the circle

ACCESS MORE