[tex]\vec F(x,y,z)=e^{xy}\sin z\,\vec\jmath+y\tan^{-1}\dfrac xz\,\vec k[/tex]
Divergence is easier to compute:
[tex]\mathrm{div}\vec F=\dfrac{\partial(e^{xy}\sin z)}{\partial y}+\dfrac{\partial\left(y\tan^{-1}\frac xz\right)}{\partial z}[/tex]
[tex]\mathrm{div}\vec F=xe^{xy}\sin z-\dfrac{xy}{x^2+z^2}[/tex]
Curl is a bit more tedious. Denote by [tex]D_t[/tex] the differential operator, namely the derivative with respect to the variable [tex]t[/tex]. Then
[tex]\mathrm{curl}\vec F=\begin{vmatrix}\vec\imath&\vec\jmath&\vec k\\D_x&D_y&D_z\\0&e^{xy}\sin z&y\tan^{-1}\frac xz\end{vmatrix}[/tex]
[tex]\mathrm{curl}\vec F=\left(D_y\left[y\tan^{-1}\dfrac xz\right]-D_z\left[e^{xy}\sin z\right]\right)\,\vec\imath-D_x\left[y\tan^{-1}\dfrac xz\right]\,\vec\jmath+D_x\left[e^{xy}\sin z}\right]\,\vec k[/tex]
[tex]\mathrm{curl}\vec F=\left(\tan^{-1}\dfrac xz-e^{xy}\cos z\right)\,\vec\imath-\dfrac{yz}{x^2+z^2}\,\vec\jmath+ye^{xy}\sin z\,\vec k[/tex]