Respuesta :
Answer:
x^2 -6x+44
Step-by-step explanation:
Develop form of (x-3)^2 is x^2 - 6x +9
Then y= x^2 -6x +9 + 35
So, y= X^2 -6x +44
Answer:
[tex]y=x^2 -6x+44[/tex]
Step-by-step explanation:
The standard form of a quadratic equation is:
[tex]y = ax ^ 2 + bx + c[/tex].
In this case we have the following quadratic equation in vertex form
[tex]y=(x-3)^2+35[/tex]
Now we must rewrite the equation in the standard form.
[tex]y=(x-3)(x-3)+35[/tex]
Apply the distributive property
[tex]y=x^2 -3x -3x +9+35[/tex]
[tex]y=x^2 -6x+9+35[/tex]
[tex]y=x^2 -6x+44[/tex]
the standard form of the equation is: [tex]y=x^2 -6x+44[/tex]