Answer:
1119.1 K
Explanation:
From Clausius-Clapeyron equation:
[tex]\frac{dP}{dT}=[/tex]Δ[tex]\frac{h_{v} }{R} (\frac{1}{T^{2} } )dT[/tex]
The equation may be integrated considering the enthalpy of vaporization constant, and its result is:
[tex]ln(\frac{P_{2} }{P_{1} } )=-[/tex]Δ[tex]\frac{h_{v} }{R}*(\frac{1}{T_{2} }-\frac{1}{T_{1} })[/tex]
Isolating the temperature [tex]T_{2}[/tex]
[tex]T_{2}=\frac{1}{\frac{-R}{dhv}*ln(\frac{P_{2} }{P_{1}}) +\frac{1}{T_{1}} }[/tex]
[tex]T_{2}=\frac{1}{\frac{-8.314}{1.00*10^5}*ln(\frac{500}{40}) +\frac{1}{906.15}}[/tex]
[tex]T_{2}=1119.1K[/tex]
Note: Remember to change the units of the enthalpy vaporization to J/mol; and the temperatures must be in Kelvin units.
There is a format mistake with the enthalpy of vaporization, each 'Δ' correspond to that.