Respuesta :

Answer:

Part 1) [tex]x=(+/-)\frac{1}{\sqrt{11}}[/tex] -----> [tex](x,\frac{\sqrt{110}}{11})[/tex]

Part 2) [tex]x=(+/-)\frac{6\sqrt{2}}{11}[/tex] ----> [tex](x,\frac{7}{11})[/tex]

Part 3) [tex]x=(+/-)\frac{4\sqrt{6}}{11}[/tex]  ----> [tex](x,\frac{5}{11})[/tex]

Part 4) [tex]x=(+/-)\frac{2\sqrt{10}}{11}[/tex]   ---> [tex](x,\frac{9}{11})[/tex]

Step-by-step explanation:

we know that

In the unit circle

The coordinates of a point have the following rule

[tex]x^{2} +y^{2} =r^{2}[/tex]

where

(x,y) are the coordinates of the point a r is the radius

but remember that in a unit circle the radius is equal to 1

so

[tex]x^{2} +y^{2} =1[/tex]

[tex]x^{2}=1-y^{2}[/tex]

[tex]x=(+/-)\sqrt{1-y^{2}}[/tex]

Find the x-coordinate of each case

Part 1) we have the point

[tex](x,\frac{\sqrt{110}}{11})[/tex]

so

The y-coordinate is

[tex]y=\frac{\sqrt{110}}{11}[/tex]  

Find the value of the x-coordinate

substitute

[tex]x=(+/-)\sqrt{1-y^{2}}[/tex]  

[tex]x=(+/-)\sqrt{1-(\frac{\sqrt{110}}{11})^{2}[/tex]

[tex]x=(+/-)\sqrt{1-(\frac{110}{121})[/tex]

[tex]x=(+/-)\sqrt{\frac{11}{121})[/tex]

[tex]x=(+/-)\frac{\sqrt{11}}{11}[/tex]

[tex]x=(+/-)\frac{1}{\sqrt{11}}[/tex]

Part 2) we have the point

[tex](x,\frac{7}{11})[/tex]

so

The y-coordinate is

[tex]y=\frac{7}{11}[/tex]  

Find the value of the x-coordinate

substitute

[tex]x=(+/-)\sqrt{1-y^{2}}[/tex]  

[tex]x=(+/-)\sqrt{1-(\frac{7}{11})^{2}[/tex]

[tex]x=(+/-)\sqrt{1-(\frac{49}{121})[/tex]

[tex]x=(+/-)\sqrt{\frac{72}{121})[/tex]

[tex]x=(+/-)\frac{6\sqrt{2}}{11}[/tex]  

Part 3) we have the point

[tex](x,\frac{5}{11})[/tex]

so

The y-coordinate is

[tex]y=\frac{5}{11}[/tex]  

Find the value of the x-coordinate

substitute

[tex]x=(+/-)\sqrt{1-y^{2}}[/tex]  

[tex]x=(+/-)\sqrt{1-(\frac{5}{11})^{2}[/tex]

[tex]x=(+/-)\sqrt{1-(\frac{25}{121})[/tex]

[tex]x=(+/-)\sqrt{\frac{96}{121})[/tex]

[tex]x=(+/-)\frac{4\sqrt{6}}{11}[/tex]  

Part 4) we have the point

[tex](x,\frac{9}{11})[/tex]

so

The y-coordinate is

[tex]y=\frac{9}{11}[/tex]  

Find the value of the x-coordinate

substitute

[tex]x=(+/-)\sqrt{1-y^{2}}[/tex]  

[tex]x=(+/-)\sqrt{1-(\frac{9}{11})^{2}[/tex]

[tex]x=(+/-)\sqrt{1-(\frac{81}{121})[/tex]

[tex]x=(+/-)\sqrt{\frac{40}{121})[/tex]

[tex]x=(+/-)\frac{2\sqrt{10}}{11}[/tex]