Please solve the attachment below
![Please solve the attachment below class=](https://us-static.z-dn.net/files/daf/ec2a452e64aa7f674a1f8a3d157c8c9e.jpeg)
Answer:
Part 1) [tex]x=(+/-)\frac{1}{\sqrt{11}}[/tex] -----> [tex](x,\frac{\sqrt{110}}{11})[/tex]
Part 2) [tex]x=(+/-)\frac{6\sqrt{2}}{11}[/tex] ----> [tex](x,\frac{7}{11})[/tex]
Part 3) [tex]x=(+/-)\frac{4\sqrt{6}}{11}[/tex] ----> [tex](x,\frac{5}{11})[/tex]
Part 4) [tex]x=(+/-)\frac{2\sqrt{10}}{11}[/tex] ---> [tex](x,\frac{9}{11})[/tex]
Step-by-step explanation:
we know that
In the unit circle
The coordinates of a point have the following rule
[tex]x^{2} +y^{2} =r^{2}[/tex]
where
(x,y) are the coordinates of the point a r is the radius
but remember that in a unit circle the radius is equal to 1
so
[tex]x^{2} +y^{2} =1[/tex]
[tex]x^{2}=1-y^{2}[/tex]
[tex]x=(+/-)\sqrt{1-y^{2}}[/tex]
Find the x-coordinate of each case
Part 1) we have the point
[tex](x,\frac{\sqrt{110}}{11})[/tex]
so
The y-coordinate is
[tex]y=\frac{\sqrt{110}}{11}[/tex]
Find the value of the x-coordinate
substitute
[tex]x=(+/-)\sqrt{1-y^{2}}[/tex]
[tex]x=(+/-)\sqrt{1-(\frac{\sqrt{110}}{11})^{2}[/tex]
[tex]x=(+/-)\sqrt{1-(\frac{110}{121})[/tex]
[tex]x=(+/-)\sqrt{\frac{11}{121})[/tex]
[tex]x=(+/-)\frac{\sqrt{11}}{11}[/tex]
[tex]x=(+/-)\frac{1}{\sqrt{11}}[/tex]
Part 2) we have the point
[tex](x,\frac{7}{11})[/tex]
so
The y-coordinate is
[tex]y=\frac{7}{11}[/tex]
Find the value of the x-coordinate
substitute
[tex]x=(+/-)\sqrt{1-y^{2}}[/tex]
[tex]x=(+/-)\sqrt{1-(\frac{7}{11})^{2}[/tex]
[tex]x=(+/-)\sqrt{1-(\frac{49}{121})[/tex]
[tex]x=(+/-)\sqrt{\frac{72}{121})[/tex]
[tex]x=(+/-)\frac{6\sqrt{2}}{11}[/tex]
Part 3) we have the point
[tex](x,\frac{5}{11})[/tex]
so
The y-coordinate is
[tex]y=\frac{5}{11}[/tex]
Find the value of the x-coordinate
substitute
[tex]x=(+/-)\sqrt{1-y^{2}}[/tex]
[tex]x=(+/-)\sqrt{1-(\frac{5}{11})^{2}[/tex]
[tex]x=(+/-)\sqrt{1-(\frac{25}{121})[/tex]
[tex]x=(+/-)\sqrt{\frac{96}{121})[/tex]
[tex]x=(+/-)\frac{4\sqrt{6}}{11}[/tex]
Part 4) we have the point
[tex](x,\frac{9}{11})[/tex]
so
The y-coordinate is
[tex]y=\frac{9}{11}[/tex]
Find the value of the x-coordinate
substitute
[tex]x=(+/-)\sqrt{1-y^{2}}[/tex]
[tex]x=(+/-)\sqrt{1-(\frac{9}{11})^{2}[/tex]
[tex]x=(+/-)\sqrt{1-(\frac{81}{121})[/tex]
[tex]x=(+/-)\sqrt{\frac{40}{121})[/tex]
[tex]x=(+/-)\frac{2\sqrt{10}}{11}[/tex]